Formal Analysis of the Remote Agent

Before and After Flight

Klaus Havelund®, Mike Lowry, SeungJoon Park?,
Charles Pecheur?, John Penix, Willem Visser?, Jon L. White®

The Automated Software Engineering Group
NASA Ames Research Center,
Moftett Field, California, USA.

! Recom Technologies, 2 RIACS, ® Caelum

Abstract

This paper describes two separate efforts for using the SPIN
model checker to verify deep space autonomy flight software.
The first effort occurred at the beginning of a spiral develop-
ment process and found five concurrency errors early in the
design cycle that the developers acknowledge would not have
been found through testing. This effort required a substan-
tial manual modeling effort involving both abstraction and
translation from the prototype LISP code to the PROMELA
language used by SPIN. This experience and others led to re-
search to address the gap between formal method tools and
the development cycle used by software developers. The
Java PathFinder tool which directly translates from Java to
PROMELA was developed as part of this research, as well
as automatic abstraction tools. In 1999 the flight software
flew on a space mission, and a deadlock occurred in a sibling
subsystem to the one which was the focus of the first verifi-
cation effort. A second quick-response “clean-room” verifi-
cation effort found the concurrency error in a short amount
of time. The error was isomorphic to one of the concurrency
errors found during the first verification effort. The paper
demonstrates that formal methods tools can find concurrency
errors that indeed lead to loss of spacecraft functions, even for
the complex software required for autonomy. Second, it de-
scribes progress in automatic translation and abstraction that
eventually will enable formal methods tools to be inserted di-
rectly into the aerospace software development cycle.

1 Introduction

Complex concurrent software is difficult to debug and even
more difficult to test with adequate coverage. With the in-
creasing power of flight-qualified microprocessors, NASA
space enterprises are experimenting with a new generation
of non-deterministic flight software that provides enhanced
mission capabilities. A prime example is the Remote Agent
(RA) autonomous spacecraft controller developed at NASA.
In May 1999, the RA was successfully demonstrated in flight
on Deep Space 1 (DS-1), the first flight of NASA’s experi-
mental New Millennium program. RA is a complex, concur-
rent software system employing several automated reasoning
engines using artificial intelligence technology. The verifica-
tion of such complex software is critical to its acceptance by
science mission managers.

This paper describes formal methods verification efforts
for one of the three subsystems of the RA — specifically, the
RA Executive, which provides operating-system level capa-
bilities for goal-directed software. Two different verification
activities were conducted, before and after flight, using differ-
ent technologies and in very different contexts. As such, this
paper provides two successive snapshots of progress towards
making formal methods verification cost-effective.

In 1997, while RA was still in the development stage, we
modeled and verified a subset of the core services of the RA
EXEC using the SPIN [9] model checker. That verification
unveiled several concurrency bugs that were acknowledged
by RA EXEC developers [6].

As a result of this effort, it was decided to develop model
checking technology for a main stream programming lan-
guage in order to reduce the amount of time spent on mod-
eling the behavior of programs in SPIN. The result was a

translator, called Java PathFinder, from Java to the model-
ing language PROMELA of SPIN. In addition, a tool was
developed for abstracting Java programs to reduce their state
space, making model checking tractable.

Then, during the actual RA experimentin 1999, a deadlock
occurred within less than 24 hours of operation. Although
the problem was promptly identified and circumvented by the
DS-1 team, we took the challenge of trying to diagnose the
error in a fast-response “clean room” experiment . After iso-
lating a suspicious part of the program by visual inspection,
we modeled it in Java, and then used our Java PathFinder to
exhibit a concurrency error that indeed turned out to be the
one that had occurred in flight.

One key observation of these two successive experiments
is that the error that caused the deadlock is exactly isomor-
phic to one of those found using SPIN two years before in
another part of the code. It is a concurrency error, whose
activation depends on an a priori unlikely scheduling condi-
tions between concurrent tasks. In fact, this error did not ap-
pear in over 300 hours of system-level testing on JPL’s flight
system testbed. The conditions under which it occurred in
flight were not anticipated during testing. A principal benefit
of model checking technologies is to be able to exhaustively
cover scheduling alternatives. This paper gives a compelling
illustration of how model checking found an error that was a
priori unlikely but did actually occur. It also discusses gaps
between previous formal method tools and requirements for
making them easily accessible to system developers for ‘in
the loop’ verification. Technological advances towards nar-
rowing this gap are described in the context of the RA verifi-
cation.

Section 2 describes the Remote Agent experiment. Section
3 describes the verification effort before flight, while Section
4 describes the verification effort after flight. The section also
presents the Java PathFinder. Section 5 describes the Java
abstraction tool, and finally, Section 6 contains a conclusion.

2 The Remote Agent Experiment

To prepare for space exploration programs of the next
decades within a reduced budget, NASA has set up the New
Millennium program: a series of technology validation flights
whose objective is to accelerate the qualification for flight
of new spacecralt technology. One of the objeclives of the
New Millennium program is to increase spacecraft autonomy,
moving from the low-level control sequences currently in use
towards mission-level planning and autonomous health mon-
itoring and recovery.

IBy “clean room™ we are referring to the fact that, while the verification
was post-facto, the team had no interaction with the actual debugging team.

o

Deep-Space 1 (DS-1), the first New Millennium Mission,
was launched from Cape Canaveral on 24 October 1998 and
ended its primary mission in September 1999 (it is still oper-
ating and is on its way for a comet encounter in 2001). During
that mission, it successfully tested 12 cutting-edge technolo-
gies such as ion propulsion, on-board optical navigation, and
an Al-based autonomous controller called the Remote Agent
(RA), marking the first operational use of artificial intelli-
gence during space flight.

In its initial design, the Remote Agent Experiment (RAX)
on DS-1 consisted of a short limited 12-hour scenario de-
signed to gain confidence in the RA, followed by a complete
6-day scenario that was the full RA test. Later, the experiment
had to be compressed into a single 2-day scenario, to accom-
modate external mission constraints. The original scenarios
were designed to cover a formal list of validation objectives.
To protect the main DS-1 mission from possible misbehav-
iors of RA, the design included a “safety net” that allowed
the RA experiment to be completely disabled with a single
command, issued either from the ground or by on-board fault
protection.

The Remote Agent went through a thorough qualification
process before being allowed to run on DS-1. Though some
formal verification tasks, such as the one reported here, were
performed as feasibility studies, the formal qualification pro-
cess relied on more conventional testing approaches. How-
ever, since the Remote Agent was a flight experiment, and
not flight software, it was not subjected to the testing stan-
dards of the latter.

This section is a short summary of the flight qualification
and experience of the Remote Agent [2, 12].

2.1 Remote Agent

The Remote Agent is an autonomous spacecraft controlier
developed by NASA Ames conjointly with the Jet Propulsion
Laboratory (JPL) [11]. It comprises three components:

e The Planner and Scheduler (PS) [10] generates flexi-
ble plans, specifying the basic activities that must take
place. Given a mission goal, it produces sequences of
tasks for achieving this goal using available system re-
sources.

The Smart Executive (EXEC) [13] receives the plan
from the Planner/Scheduler and commands spacecraft
systems to take the necessary actions to achieve and
maintain the specified spacecraft states.

e The Mode Identification and Recovery component
(MIR), called Livingstone [15], monitors the state of the

spacecraft, detects and diagnoses failures and suggests
recovery actions to the Executive.

The Executive subsystem is the focal point of the verifi-
cation work discussed in this article. It combines features
of multi-threaded operating systems with aspects of Al lan-
guages based on sub-goaling, such as Prolog. It is conceptu-
ally composed of three layers: a set of core services that im-
plement a robust operating system for executing concurrent
tasks, a set of engine modules including a plan runner, and a
set of mission-specific task programs. The executive sched-
ules the execution of concurrent tasks. It also monitors a set
of properties associated to system resources, and takes recov-
ery actions on property violations. The Executive is written
in a multi-threaded LISP, using a set of LISP macros called
Executive Sequencing Language (ESL) developed at JPL.

2.2 Testing the Remote Agent

Because autonomous systems such as the RA need to respond
robustly in a wide range of situations, verifying that they re-
spond correctly in all situations would require a huge number
of test cases. Furthermore, these tests ideally have to be run
on high-fidelity testbeds that are highly oversubscribed, hard
to configure and running at real time speeds, taking hours or
days for a single run.

To addrcss these problems, the RAX tcam followed a
“basclinc testing” approach, starting from nominal sccnarios
and testing a number of nominal and off-nominal variations
around these scenarios. A wide range of variations were run
on more available and faster low-fidelity testbeds, leading to
the identification and resolution of 100-200 bugs during 18
months. An automatcd testing tool was designed for this pur-
pose. Some of the most likely off-nominal variants were run
on medium-fidelity testbeds, while only nominal scenarios
and certain performance and timing related tests were per-
formed on high-fidelity testbeds. The final stage was a pair
of “dress rehearsal” operational readiness tests (ORTs), in-
volving actual communication with the mission control cen-
ter. The bulk of the problems identified during testing were
found with the low-fidelity testbeds. The ORTs only identi-
fied minor shortcomings that were resolved prior to flight.

2.3 Remote Agent in Flight

On Monday, May 17th, 1999, 11:04 am PDT, a telemetry
packet confirmed that the Remote Agent had taken control of
DS-1. The scenario went on smoothly, achieving 70% of the
objectives, until Tuesday 7:00 am, when it became apparent
that a command had not been executed as expected by the
Remote Agent. The RA executive was blocked, although the

rest of RA and the spacecraft was otherwise healthy. EXEC’s
low-level commands were used to gather a maximum of in-
formation, and then the experiment was interrupted.

By late Tuesday afternoon, the RAX team had found the
source of the problem in the EXEC code. They designed a 6-
hour scenario, that was ran on the Friday morning and went
successfully through the remaining 30% of the objectives. A
patch was also generated, but the DS-1 mission decided not
to uplink it, considering the insufficient testing and the very
low probability of the problem recurring.

The blocking was due to a missing critical section that
had lead to a race condition between two concurrent EXEC
threads. Under some very precise and unlikely timing cir-
cumstances, both threads could end up in a deadlock condi-
tion in which each one was waiting for an event that only the
other one could provide, which is exactly what happened in
flight.

3 Formal Analysis Before Flight

In April-May 1997 we analyzed part of the Remote Agent
Executive using the SPIN model checker [6]. This effort lead
to the discovery of five errors in the LISP code which are
described below. As discussed in Section 4.3, one of these
errors is isomorphic to the error that actually occurred dur-
ing flight, causing a deadlock. First we give a short descrip-
tion of SPIN and its modeling language PROMELA. Then
we explain how a PROMELA model was extracted from the
LISP code, and how properties were stated and verified in
the model, leading to the discovery of the five errors. We
conclude with a discussion of the methodology that has been
followed.

3.1 The SPIN Model Checker

SPIN [9] is a tool for analyzing the correctness of finite state
concurrent systems with respect to formally stated properties.
A concurrent system is modeled in the PROMELA model-
ing language, and properties to be verified are formalized
as assertions in the program or as formulae in the temporal
logic LTL (Linear Temporal Logic). SPIN provides a model
checker, which automatically examines all program behav-
iors in order to decide whether the PROMELA program sat-
isfies the stated properties. In case a property is not satisfied,
an error trace is generated, which illustrates the sequence of
executed statements from the initial state to the state that vio-
lates the property. These error traces can then be executed in
a simulator. The set of states reachable from the initial state
must be finite in case a property needs to be proven correct
for the whole state space.

A PROMELA program consists of a set of sequential
processes that communicate via message passing through
bounded buffered channels and via shared variables. Pro-
cesses can be created dynamically. The behavior of an in-
dividual process is described using the statement language
which provides many standard constructs such as variable as-
signments, channel communications, loops, conditionals and
sequential composition. Variables are typed, where a type can
either be primitive such as integer, or composed in the form of
arrays and records. PROMELA provides inline procedures, a
limited notion of procedural abstraction that is implemented
via macro expansion.

SPIN translates each process into a finite automaton, and
the global behavior of the system is then obtained by com-
puting an asynchronous interleaving product of all these au-
tomata, creating the global state space. To perform model
checking, SPIN translates (the ncgation of) any LTL formula
into a Biichi automaton, and computes the synchronous prod-
uct of this and the global state space. The result is again a
Biichi automaton. If the language of this automaton is empty
it means that the formula is not satisfied. SPIN searches the
state space depth-first, creating the states on-the-fly. A partial
order reduction technique is used to prune the set of transi-
tions to be explored.

3.2 Creating a PROMELA Model

The modeling focused on the core services of the plan execu-
tion module. The RA Executive core is designed to support
execution of software controlled tasks on board the space-
craft. A task often requires specific properties to hold during
its execution. When a task is started, it first tries to achieve
the properties on which it depends, where after it starts per-
forming its main function. Several tasks may try to achieve
conflicting properties, for example one task may try to turn
on a camera while another task tries to turn it off. To pre-
vent such conflicts, a task has to lock any property it wants to
achieve in a lock table. Once, a property is locked, it can be
achieved by the task locking the property.

Properties may, however, be unexpectedly broken while
tasks depending on them are executing. A property is de-
fined as broken when it is locked in the lock table by some
task, has been achieved (an extra boolean field in the lock ta-
ble), but for some reason fails to hold on board the spacecraft.
For the purpose of detecting what properties hold on board, a
database is maintained of all properties being true at any time.
Hence, an inconsistency can be detected by relating the lock
table with the database. Tasks depending on a broken prop-
erty must be interrupted and informed about the anomaly. For
this purpose, a daemon monitors the changes on board the
spacecraft, and in particular the consistency between the lock

table and the database. The daemon is normally asleep, but is
awakened whenever there is a change in the lock table or the
database, where after it checks their consistency.

The PROMELA model focuses on operations on the lock
table. Hence, it is an abstraction of the LISP program, omit-
ting details irrelevant for the lock table operations. The
LISP program is approximately 3000 lines of code while
the PROMELA model is 500 lines of code. Furthermore,
the model only deals with a limited number of tasks and
properties in order to limit the search space the SPIN model
checker has to explore. Most abstractions are made in an in-
formal manner without any formal proofs showing that bugs
are maintained. Hence, in the abstraction phase we may have
left out errors in the LISP code. However, all the errors we
found in the model were also errors in the LISP code.

(defun daemon ()
(loopr
(if (check-locks}
(do-automatic-recovery)}
(unless
(changed?
(+ (evenlL-counl *dalabase-evenl*)
(event-count *lock-event*)))
(wait-for-events
(list *database-event*
lock-event)))))

Figure 1: Daemon in LISP

To give an idea of the modeling, we show how the daemon
was translated, since it was the daemon that contained the
error pattern which also occurred during flight, and which
was found using the model checker. The actual LISP code
describing the behavior of the daemon is given in Figure 1.

The daemon goes through a loop, where in each itera-
tion it checks the lock table, relating it to the database, and
recovers any inconsistencies that may be detected (if the
check-locks function returns true). After that, it goes
to sleep by calling the wait-for-events function, which
as parameters takes a list of events to wait for. Whenever one
of these events is signaled, i.e. the database or the lock table
is modified, the daemon will wake up and continue.

In order to catch events that occur while the daemon is
executing, each event has an associated event counter that is
increased whenever the event is signaled. The daemon only
calls wait-for—-events in case these counters have not
changed, hence, there have been no new events since it was
last restarted from a call of wait-for-events.

The PROMELA model of this LISP code is presented
in Figure 2. The if-construct decides whether the daemon
should stop and wait for a new database event or lock event

proctype daemon(TaskId this) {

byte event_count = 0;

do

:: check_locks_and_recover;
if

(Ev [DATABASE_EVENT] .count +
Ev [LOCK_EVENT] .count
== event_count)}
->
wait_for_events{this,
DATABASE_EVENT, LOCK_EVENT}
1 else ->
event_count =
Ev [DATABASE_EVENT] .count +
Ev [LOCK_EVENT] .count

od

Figure 2: Daemon in PROMELA

to occur (call of wait_for_events), or whether it should
continue for another iteration. Another iteration is needed
if a database event or a lock event has occurred since the
daemon was restarted last time; that is, in case the event
counter event_count differs from the sum of the event
counters for the database and lock events. If there is a dif-
ference, it means that there has been an event since last time
event_count was updated, and the daemon must perform
another iteration before calling wait_for_events, first
updating event _count to hold the new event counter sum.

3.3 Stating and Verifying Properties

The model was analyzed with respect to the following two
properties, here expressed informally. The release property
reads: “A task releases all of its locks before it terminates”.
The abort property reads: “If an inconsistency occurs be-
tween the database and an entry in the lock table, then all
tasks that rely on the lock will be terminated, either by them-
selves or by the daemon in terms of an abort”. The release
property was formulated by inserting an assertion in the code
at the end of each task. This assertion stated that all locks
should be released at this point. The second property was
stated as a linear temporal logic property of the form:

[l {propertybroken -> <>tasks_informed)

This property says: whenever a property is broken,
then eventually all tasks depending on this property will
be informed about it (in fact terminated). The names
property_broken and tasks_informed are macro
names standing for predicates on the state space.

The attempted verification of the two properties led to the
direct discovery of five programming errors — one breaking
the release property, three breaking the abort property, and
one being a non-serious efficiency problem where code was
executed twice instead of once. The first four of these errors
are classical concurrency errors in the sense that they arise
due to processes interleaving in unexpected ways.

The error we want to focus on in this presentation is the
one isomorphic to the RAX anomaly. The error caused the
abort property to be violated. The error trace generated by
SPIN demonstrated the following situation. The daemon is
prompted to perform a check of the lock table. It finds every-
thing consistent and checks the event counters to see whether
there have been any new events while it has been running.
This is not the case, and the daemon therefore decides to
call wait-for—events. However, at this point an incon-
sistency is introduced, and a signal is sent by the environ-
ment, causing the event counter for the database event to be
increased. This is not detected by the daemon since it has al-
ready made the decision to wait, which it then does, and the
inconsistency now is undiscovered by the daemon. Our sug-
gested solution at the time was to enclose the test and the wait
within a critical section, which does not allow scheduling in-
terrupts to occur between the test and the wait. Furthermore,
two other flawed code fragments violated the abort property.

The release property was violated in the sense that locks
did not always get released by a task. The error trace gener-
ated by SPIN demonstrated that during a task’s release of a
lock, but before its actual release, the task may get interrupted
by the daemon if the property gets broken. This means that
the task terminates without releasing the lock. The error is
particularly nasty in the sense that all code, except the lock
releasing itself, had been protected against this situation: in
case of an interrupt the lock releasing would be executed.

The model was verified exhaustively using SPIN’s partial
order reduction algorithm and state compression. Typically
between 3.000 - 200.000 states were explored in the differ-
ent models, using between 2 - 7 Mb of memory, and using
between 0.5 - 20 seconds.

3.4 Discussion of Methodology

The verification effort has been regarded by all involved par-
ties as a very successful application of model checking, and
of SPIN in particular. According to the RA programming
team, the effort has had a major impact, locating errors that
would probably not have been located otherwise, and identi-
fying a major design flaw.

The modeling effort, i.e. obtaining a PROMELA model
from the LISP program, took about 12 man weeks during 6
calendar weeks, while the verification effort took about one

week. The modeling effort consisted conceptually of an ab-
straction activity combined with a transiation activity. Ab-
straction was needed to cut down the program to one with a
reasonably small finite state space, making model checking
tractable. Translation, from LISP to PROMELA, was needed
to obtain a PROMELA model that the SPIN model checker
could analyze.

The abstraction was done without any knowledge about the
properties to be verified, since these were stated later. The
abstraction maintaincd important opcrations on the lock ta-
ble and ignorcd most other details of the original LISP pro-
gram, hence, a kind of program slicing. No formal attempt
was made to show that the abstractions preserved errors. It is
interesting that such an ad hoc approach still was extremely
effective. The translation phase was non-trivial and time con-
suming due to the relative expressive power of LISP when
compared with PROMELA.

Based on these observations, two research efforts were ini-
tiated that should make application of model checking within
the software development cycle less resource demanding. In
one effort a translator from the Java programming language to
PROMELA has been developed, see Section 4.2. In another
effort, an abstraction tool has been developed, which can per-
form so-called predicate abstractions on Java programs, see
Section 5. Both tools have been applied in the verification of
the Remote Agent as described in the following.

4 Formal Analysis After Flight

Shortly after the anomaly occurred during the Remote Agent
Experiment, on Tuesday May 18, the ASE team at NASA
Ames heard that something had broken down in the RA while
it was in control of the spacecraft and offered their help to
the RAX team. On Friday morning, after a few email ex-
changes, the RAX team provided access to the source code
of the EXEC, without identifying where the error was, and
offered the ASE group the challenge of seeing “how long it
would take for formal methods to come up with it”.

On Friday afternoon, we decided to run a “clean room”
experiment to determine whether or not the technology cur-
rently used and under development in the group could have
discovered the bug before it actually happened. At that
time, we knew that debugging information collected from the
spacecraft had enabled the DS-1 team to identify the bug and
continue the experiment, and that the failure had something to
do with a “handshaking” communication between a Planner
process and an Executive process. Other than these messages
we had no further information, and no one in the ASE group
had any contact with RAX personnel during that week.

This section first describes how the experiment was con-

ducted. Then the Java PathFinder translator that was used to
model check the flawed code is described. This is followed
by a description of the error and how it was found using Java
PathFinder. We conclude with a discussion of the methodol-
ogy that has been followed.

4.1 The Clean Room Experiment

To make this clean room experiment credible, we decided that
we would need to complete this exercise over the week-end,
prior to the return of the RAX team from the DS-1 mission
control at JPL the following Monday. This was both to avoid
undue influence by people familiar with the details of the bug,
and also to meet the “short-turnaround” challenge, mimick-
ing what would be required if we were actually called on to
provide “on-line” assistance.

The experiment was set up as follows. A front-end group
would try to spot the error by human inspection, or at least
identify problematic parts of the code. On the basis of that, it
would extract a more or less self contained portion of the code
containing the problematic code portions, of a tractable size
a model checker. This extracted code would then be handed
over to the back-end group without any hints as to what could
be the error. The back-end group would then try to locate the
error using model checking. The situation was comparable to
someone doing visual inspection of code, and finding suspect
sections which he wanted to explore further.

The front-end team began perusing the code on Friday af-
ternoon, and extracted roughly 700 lines containing question-
able code?. The full group met again on Saturday afternoon,
and the front-end team gave the back-end team the extracted
code. In accordance with the design of the experiment, they
did not tell where the suspected bug was, but they briefed
the back-end team on the control and data structures of the
extracted code. The back-end group had a hard time under-
standing that code in order to model it, but on Sunday morn-
ing came out with a fairly abstract model of the suspicious
code. That model was written in Java and verified with the
Java model checker Java PathFinder, as described below. It
reported a deadlock, which turned out to be the one that had
happened in flight five days before.

4.2 The JPF Translator

The Java PathFinder, JPF, is a translator from a non-trivial
subset of Java to PROMELA, and is described in detail in [7].
Given a Java program, JPF translates this into a PROMELA
program, which then can be model checked using SPIN. Java
is an object oriented programming language with a built-in

2Though they were not sure that they had indeed captured the concur-
Tency error.

notion of threads. Objects are instantiated dynamically from
classes, which can be defined using single class inheritance.
Threads, which are special objects with an activity, can com-
municate by making calls to methods defined in shared ob-
jects. Such methods can be defined as synchronized, thereby
turning these shared objects into monitors, allowing only one
thread to operate in the object at a time.

In the default mode, the SPIN model checker will find any
deadlocks present in the Java program. Such deadlocks can
occur when several threads compete about the access to mon-
itors. Properties can also be formulated explicitly by the user,
either as assertions in the program, or as linear temporal logic
formulae. That is, a Java program can be annotated with as-
sertions written as calls to a special assert method which
takes a boolean argument expression over the variables in the
Java program. Any such call is translated into a correspond-
ing PROMELA assertion, which will then be checked during
the state space exploration whenever reached. Finally, SPIN’s
own linear temporal logic can be used to formulate properties
over the Java program’s static variables (a static variable in
Java is defined within a class, but is only allocated once, and
hence is shared between all objects of the class).

A significant subset of Java is supported by JPF: dynamic
creation of objects with data and methods, static variables and
static methods, class inheritance, threads and synchronization
primitives for modeling monitors (synchronized statements,
and the wait and notify methods), exceptions, thread
interrupts, and most of the standard programming language
constructs such as assignment statements, conditional state-
ments and loops.

The translator is written in 6000 lines of LISP, and was
developed over a period of 8 months. JPF has been ap-
plied to a number of case studies, amongst them a 1500 line
game server [8], a NASA file transfer protocol for satellites,
and a NASA data transmission protocol for the space shuttle
ground control.

A related attempt to provide model checking technology
for Java is described by Demartini et. al. [5], which also
translates Java programs into PROMELA. However this ap-
proach does not handle exceptions or polymorphism as does
Java PathFinder. In another related approach, Corbett [4] de-
scribes a theory of translating Java to a transition model, mak-
ing use of static pointer analysis to aid virtual coarsening,
which reduces the size of the model.

4.3 The RAX Error

The suspected and eventually confirmed error was a missing
critical section around a conditional wait on an event. The
relevant piece of code (anonymized for confidentiality pur-
poses) is shown in Figure 3.

(loop
(when
(*1*) (or (/= count (esl::event-count eventl))
(*2%) (warp-safe (wait-for-event eventl)))
(setf count (esl::event-count eventl))
;
(*3*) (signal-event event2)))

Figure 3: The RAX Error in LISP

This is the body of one of the concurrent tasks and con-
sists of a loop. The loop starts with a when statement whose
condition is a sequential-or statement® that states: if the event
counter has not been changed (*1*), then wait (*2*), else
proceed. This behavior is supposed to avoid waiting on the
event queue if events were received while the process was ac-
tive. However, if the event occurs between (*1*) and (*2*),
it is missed and the process goes asleep. Because the other
process that produces those events is itself activated by events
created by this one in (*3*), both end up waiting for each
other, a deadlock situation.

This follows a similar pattern as the code shown in fig-
ure 1, that had been identified as a source of error during the
verification of the Executive in 1997, as described in Sec-
tion 3.3. This similarity was spotted by members of both the
front-end and back-end teams, and contributed greatly to nar-
rowing down the verification effort to this particular potential
problem.

4.4 Demonstrating the RAX Error with JPF

The modeling focused on the code under suspicion for con-
taining the error. The major two components to be modeled
were events and tasks, as illustrated in Figure 4. The fig-
ure shows a Java class Event from which event objects can
be instantiated. The class has a local counter variable and
two synchronized methods, one for waiting on the event and
one for signaling the event, releasing all threads having called
wait_for_event. Note how the counter is incremented by
signal_event in order to allow the tasks to check whether
new events have arrived. The increment is modulo 3 in order
to reduce the state space to be searched by the model checker.
This is an informal abstraction in the sense that it has not been
proven to preserve errors. Section 5 explains how an alterna-
tive counter abstraction for this program can be made and
automatically proved correct.

Figure 4 also shows the definition of one of the tasks. This
is an abstraction (in Java) of the LISP code presented in Fig-
ure 3. The task’s activity is defined in the run method of the

S(or X Y) isevaluated like if X then true else Y.

class Event{
int count = 0;

public synchronized void wait_for_event {}{
try{wait ();}catch(InterruptedException e){};

public synchronized void signal_event(){
count = (count + 1) % 3;
notifyAll();

¥
}

class FirstTask extends Thread{
Event eventl,event2;
int count = 0;

public void run{){

count = eventl.count;
while (true){
if (count == eventl.count)

eventl.wait_for_event () ;
count = eventl.count;
event2.signal_event ();

}
}
}

Figure 4: The RAX Error in Java

class FirstTask, which itself extends the Thread class, a
built-in Java class that supports thread primitives. The body
of the run method contains an infinite loop, where in each
iteration a conditional call of wait_for_events is exe-
cuted. The condition is that no new events have arrived, hence
the event counter is unchanged. After having applied JPF,
the SPIN model checker revealed the deadlock situation de-
scribed in Section 4.3. In the Java context a new event arrived
after the test (count == eventl.count), but before
the call eventl.wait_for_event ().

4.5 Discussion of Methodology

The formal analysis of the Executive after the occurrence of
the anomaly was preceded by a code inspection, which iden-
tified the possible source of the error. Several of us spotted
the potential error situation because it resembled the similar
error we had found using SPIN in 1997, as described in Sec-
tion 3.3. Due to the focus on the particular code fragment, it
was relatively easy to perform the abstraction needed to ex-
tract a Java program with a small finite state space. This took
about two hours. However, the suspicion was only a suspi-
cion, and a final proof that the code was flawed was provided
using JPF. This demonstrated the usefulness of using a model

checker to answer focused queries.

Since the original source code was in LISP, we still had
to translate it by hand in Java, which goes against JPF’s in-
tended purpose. To avoid that, one would need an abstrac-
tion tool and a translator for LISP. Since LISP’s future within
NASA is questionable we have focused on providing these
technologies for Java. Java is a very convenient modeling
language, providing most of the high level features of the
powerful Common LISP Object System (CLOS), such as dy-
namically created objects with methods and data. The major
experience with all experiments done with JPF are obviously,
that a non-trivial amount of abstraction is needed in order to
reduce the size of a program’s state space. This problem is
addressed in Section 5.

5 An Abstraction Tool for Java

As a part of the JPF project, we have been developing an au-
tomated abstraction tool, which converts a Java program to
an abstract program with respect to user-specified abstraction
criteria. The user can specify abstractions by removing vari-
ables in the concrete program and/or adding new variables
(currently the tool supports adding boolean types only) to the
abstract program. Given a Java program and such an abstrac-
tion criteria, the tool generates an abstract Java program in
terms of the new abstract variables and unremoved concrete
variables. To compute the conversion automatically, we use a
decision procedure, SVC (Stanford Validity Checker), which
checks the validity of logical expressions [1].

The abstraction tool is designed for dealing with object-
oriented programs. The user can specify abstraction criteria
for each class by removing field variables in the class and/or
adding new abstract variables to the class. Therefore, it can
be used for abstracting subcomponents in a program when
the whole program is too complicated to apply abstraction
globally. In addition, the user can specify new abstract vari-
ables which depend on variables from two different classes
(inter-class abstraction).

There has been similar work by others [3, 14] in differ-
ent frames, all of which require use of only global variables
to describe a system in simple languages similar to guarded
commands. However, our tool targets a real program lan-
guage Java and is able to deal with many problems caused by
the object-orientedness.

5.1 Application of the Tool to the RA Example

As we do not have enough space in this paper for a de-
tailed explanation of the abstraction algorithm, let us illus-
trate the abstraction performed by the abstraction tool on a

part of the RA Java code shown in Figure 4. As stated be-
fore, state explosion occurs because of the unbounded in-
crease of the count variable in the Event class (in the original
LISP code) and the assignment of the count variable in the
FirstTask class (as well as in the SecondTask which is
not shown). Therefore, we use abstraction to remove those
count variables by specifying Abstract .remove (count)
in the classes of Event and FirstTask. In place of
these variables, we add new abstraction predicates which
appear in the program with the count variables. For in-
stance, we put Abstract.addBoolean("FcntEgEcnt"”,
count==eventl.count) in the definition
of the FirstTask class to specify an abstraction predicate:
FirstTask.count is equal to Event.count. (For imple-
mentation convenience, object names are used to refer to
class types.) We also used more inter-class abstractions such
as FentGeEcnt (FirstTask.count is larger than or equal
to Event.count), ScntEgEcnt (SecondTask.count 1S
equal to Event . count), etc.

This is an example of an inter-class abstraction. Dealing
with such inter-class abstractions are more involved in object-
oriented paradigm than the abstractions inside one class. For
each inter-class abstraction, the tool generates an additional
class definition in the abstract program, which contains new
boolean variables corresponding to the specified predicate.
The boolean variables in the new class are defined as a two-
dimensional array where each index refers to an object in ei-
ther of the two classes. In Figure 5, the new abstract vari-
able FcntEqEcnt .pred[Fobj] [Eobj] corresponds to the
user-defined predicate FentEgEcnt for an object Fobj of
FirstTask class and an object Eobj of Event class, i.e.,
Fobj.count =

Given the abstraction criteria, we now need to compute the
value of the abstract variables in the abstract program so that
they are consistent with the values of concrete variables in
the program. Figure 5 shows how the abstraction tool con-
verts the assignment statement, count = count + 1 (with-
out the modulo operation) in Figure 4. First, the concrete
assignment statement is omitted in the abstract program be-
cause the variable to be assigned has been removed. Instead,
the tool checks which of the new abstract variables are pos-
sibly affected by this assignment and generates correspond-
ing assignments to those abstract variables. For the example
statement, a set of boolean variables that refers to ‘this’ Event
object will be affected: FentEqEcnt.pred[-] [this] in
Figure 5 (Actually, we use functions that return the corre-
sponding index of a given object). To update those abstract
variables, a for-statement is used. For each of the abstract
variables, the pre-images that leads the abstract variable to
be true (or false) by the assignment are computed. Then
the pre-images are mapped into abstract domain by check-

Eobj.count.

ing validity of the corresponding logical expressions. Fi-
nally, the results are used as a guard condition to set the ab-
stract variables to true (or false). In the example, the vari-
able FentEqEcnt .pred[i] [this] will be set to false if it
was true (or if some condition with another abstract variable
holds). Otherwise, the variable is set to a non-deterministic
boolean value. Because the concrete assignment statement is
regarded as atomic, a set of these abstract assignments are
declared as atomic for the JPF model checker. The addi-
tional statements for updating other abstract variables such
as FentGeEcnt are not shown in the figure.

Verify.beginAtomic();
// count = count + 1;
for(int i = 0; 1 < FentEgEcnt.numFirstTask; ++1i){

if (FentEgEcnt .pred[i] [FentEgEcent .getEvent (this)]

|| FcntGeEcnt.pred[i] [FentGeEcent.getEvent (this))
FcntEgEent .pred[i] [FentEgEcnt . .getEvent (this)] = false;
else FcntEgEcnt.pred[i] [FentEgEcnt.getEvent (this)
= Verify.randomBool () ;

}

// similar code for updating other inter-class
// abstract variables such as FentGeEcnt, etc.
Verify.endAtomic();

Figure 5: Output of the abstraction tool for the assignment
statement

5.2 Discussion of Methodology

Using the tool, we have been able to obtain an abstract Java
program of the RA code automatically. In the example, the
unbounded integer variables are replaced by a set of boolean
variables, hence the abstract program is free from the state ex-
plosion. Moreover, use of the tool helps to avoid error-prone
abstractions based on human reasoning. The tool generates a
sound approximation of the concrete program using an auto-
mated validity checker, although it is not necessarily the most
accurate one.

However, the user must give a reasonable abstraction crite-
ria for the tool to generate a meaningful abstract program in
order to check some desired properties. In case the abstrac-
tion criteria is not good enough, the result will be a too rough
abstract program which can not preserve the properties need
to be checked.

6 Conclusion
This paper describes two major verification efforts carried out

within the Automated Software Engineering Group at NASA
Ames Research Center. The first effort consisted of analyzing

part of the Remote Agent autonomous space craft software
using the SPIN model checker. One of the errors found with
SPIN, a missing critical section around a conditional wait
statement, was in fact reintroduced in a different subsystem
that was not verified in this first pre-flight effort. This error
caused a real deadlock in the Remote Agent during flight in
space.

Such concurrency-related errors only happen as the result
of particular scheduling circumstances. Scheduling is totally
uncontrolled when tests are run, and is highly sensitive to
variations in the operating environment (e.g. operating sys-
tem, other running tasks). This explains why the anomaly
happened in flight, though it had not occurred even once in
thousands of previous runs on the various ground testbeds.

Developing the formal model of the program was, how-
ever, a time consuming task, requiring a manual translation
from the Remote Agent LISP code to the PROMELA lan-
guage of the SPIN model checker. In addition, code de-
tails had to be abstracted away in order to obtain a small
enough finite state system that could be effectively model
checked. The translation difficulty spawned the initiative to
automate the translation from high level programming lan-
guages to modeling languages for formal verification, such
as PROMELA. Java was chosen as the source language be-
cause of its modern programming language constructs, such
as support for object-oriented programming, and the stan-
dardization across implementations of its concurrency con-
structs. An automatic translator from Java to PROMELA
was designed and implemented, called Java PathFinder (JPF).
With JPF one could model check smaller Java programs for
assertion violations, deadlocks, and general linear temporal
logic properties. The translator covered a substantial subset
of Java, illustrating the feasibility of the approach.

In the second effort, JPF was used for modeling the Re-
mote Agent deadlock after it occurred. That is, after the front-
end team isolated a reduced subset of the code that likely in-
cluded the error, the back-end team developed a Java program
which exposed the error. The translator translated this into
a PROMELA model, and the model checking of this model
then immediately revealed the error. Java turned out to be an
excellent choice as a modeling language, with a high level of
abstraction, due to its object oriented features. In later work, a
system that automates certain aspects of predicate abstraction
was developed, and successfully demonstrated on the same
example.

This experience gave a clear demonstration that model
checking can locate errors that are very hard to find with
normal testing and can nevertheless compromise a system’s
safety. It stands as one of the more successful applications of
formal methods to date. In its report of the RAX incident, the
RAX team indeed acknowledges that it “provides a strong

10

impetus for research on formal verification of flight critical
systems” [12].

A posteriori, given the successful partial results, one can
wonder why the first verification effort was not extended to
the rest of EXEC, which might have spotted the error before
it occurred in flight. There are two reasons for that. First, the
purpose of the effort was to evaluate the verification technol-
ogy, not to validate the Remote Agent. The ASE team did
not have the mission nor the resources needed for a full-scale
modeling nad verification effort. Second, the part of the code
in which the error was found has been written after the end of
the first verification experience.

Regarding software verification, the work presented here
demonstrates two main points. First of all, we believe that
it is worthwhile to do source code verification since code
may contain serious errors that probably will not reveal them-
selves in a design. Hence, although design verification may
have the economical benefit of catching errors early, code
verification will always be needed to catch errors that have
survived any good practice. Code will always by definition
contain more details than the design — any such detail being
a potential contributor to failure.

Second, we believe that model checking source code is
practical. The translation issue can be fully automated, as
we have demonstrated. The remaining technical challenge is
scaling the technology to work with larger programs - pro-
grams that could have very large state spaces unless suitably
abstracted. Abstraction is of course a major obstacle, but our
experience has been that this effort can be minimized given a
set of supporting tools.

Acknowledgments

We would like to thank Erann Gat, the developer of ESL, for
his useful responses to our error reports, and for providing the
comments above. We also want to thank Ron Keesing and
Barney Pell, of the RA programming team, for explaining
parts of the Executive and suggesting properties to be veri-
fied. We also appreciate Pandu Nayak, Kanna Rajan, Gre-
gory Dorais, and Nicola Muscettola for their comments on
our second verification effort. Finally, but certainly not least,
we want to thank SPIN’s designer, Gerard Holzmann, for his
always reliable support during the work.

References

[1] C. Barrett, D. Dill, and J. Levitt. Validity checking for
combinations of theories with equality. In Formal Meth-
ods In Computer-Aided Design, volume 1166 of Lecture

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

(1]

Notes in Computer Science, pages 187-201. Springer-
Verlag, November 1996.

D. Bernard et al. Spacecraft autonomy flight experi-
ence: The DS1 Remote Agent Experiment. In Proceed-
ings of the AIAA 1999, Albuquerque, NM, 1999.

M. Col6n and T. Uribe. Generating finite-state abstrac-
tions of reactive systems using decision procedures. In
Proceedings of the 10th Conference on Computer-Aided
Verification, volume 1427 of Lecture Notes in Computer
Science, pages 293-304. Springer-Verlag, July 1998.

J. Corbett. Constructing compact models of concurrent
Java programs. In Proceedings of the ACM Sigsoft Sym-
posium on Software Testing and Analysis, March 1998.
Clearwater Beach, Florida.

C. Demartini, R. Tosif, and R. Sisto. Modeling and val-
idation of Java multithreading applications using SPIN.
In Proceedings of the 4th SPIN Workshop, November
1998. Paris, France.

K. Havelund, M. Lowry, and J. Penix. Formal analysis
of a space craft controller using SPIN. In Proceedings of
the 4th SPIN workshop, Paris, France, November 1998.
To appear in IEEE Transactions of Software Engineer-

ing.

K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. NASA Ames Research
Center. To appear in the International Journal on Soft-
ware Tools for Technology Transfer (STTT), February
1999.

K. Havelund and J. Skakkebaek. Applying model check-
ing in Java verification. In Theoretical and Practical
Aspects of SPIN Model Checking — 5th and 6th In-
ternational SPIN Workshops, number 1680 in Lecture
Notes in Computer Science. Springer-Verlag, July and
September 1999. Trento, Italy — Toulouse, France (pre-
sented at the 6th Workshop).

G. Holzmann. The design and validation of computer
protocols. Prentice Hall, 1991.

N. Muscettola. HSTS: Integrating planning and
scheduling. Morgan Kaufman, 1994.

N. Muscettola, P. Nayak, B. Pell, and B. Williams. Re-
mote Agent: To boldly go where no Al system has gone
before. Artificial Intelligence, 103(1-2):5-48, August
1998.

11

(12]

[13]

[14]

[15]

P. Nayak et al. Validating the DS1 Remote Agent Ex-
periment. In Proceedings of the 5th International Sym-

posium on Artificial Intelligence, Robotics and Automa-
tion in Space (iSAIRAS-99). ESTEC, Noordwijk, 1999.

B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola,
P. Nayak, M. Wagner, and B. Williams. An autonomous
spacecraft agent prototype. Autonomous Robots, 5(1),
March 1998.

H. Saidi and N. Shankar. Abstract and model check
while you prove. In Proceedings of the 11th Confer-
ence on Computer-Aided Verification, volume 1633 of
Lecture Notes in Computer Science, pages 443-454.
Springer-Verlag, July 1999.

B. Williams and P. Nayak. A Model-based approach
to reactive self-configuring systems. In Proceedings of
AAAI-96, 1996.

